

February, 2021 - Release 1.1

Managing the build scope in

IBM DBB builds with IBM

zAppBuild

Brice Small
brice@ibm.com

Mathieu Dalbin
mathieu.dalbin@fr.ibm.com

Dennis Behm
dennis.behm@de.ibm.com

Abstract
Documentation of different approaches to manage a build

scope across multiple repositories

An IBM Document from

IBM Z DevOps Acceleration Program

mailto:brice@ibm.com
mailto:mathieu.dalbin@fr.ibm.com
mailto:dennis.behm@de.ibm.com

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 2/30

Table of content

Table of Contents

1 INTRODUCTION ... 3

1.1 THE APPLICATION SCOPE... 3
1.2 THE BUILD SCOPE.. 3
1.3 BASE SCENARIO .. 4
1.4 OVERVIEW OF SCENARIOS ... 5

2 SCENARIO 1 - BUILD CONFIGURATION REFERENCES DEPENDENT APPLICATIONS REPOSITORIES DIRECTLY ... 6

2.1 SIMPLE SCENARIO ... 6
2.1.1 Build scope configuration ... 6
2.1.2 Build scenario .. 10

2.2 ADVANCED SCENARIO .. 10
2.2.1 Build scope configuration ... 11
2.2.2 Build scenario .. 13

2.3 ADOPTION STRATEGIES FOR APPLICATIONS COPYBOOKS .. 14
2.4 ADDITIONAL CONSIDERATIONS ... 14

3 SCENARIO 2 - BUILD CONFIGURATION INCLUDES DEPENDENT INTERFACES THROUGH DEDICATED

REPOSITORIES .. 15

3.1 REPOSITORY DEFINITIONS ... 15
3.2 BUILD SCOPE CONFIGURATION ... 16

3.2.1 Build workspace with Jenkins ... 17
3.2.2 Build workspace with GitLab CI/CD .. 17
3.2.3 zAppBuild configuration ... 19

3.3 BUILD SCENARIO .. 19
3.4 ADDITIONAL CONSIDERATIONS ... 20

4 SCENARIO 3 - BUILD CONFIGURATION INCLUDES A SINGLE REPOSITORY OF ALL SHARED COPYBOOKS 21

4.1 REPOSITORY DEFINITIONS ... 21
4.2 PUBLISHING MECHANISM ... 23
4.3 BUILD CONFIGURATION .. 24

4.3.1 Build workspace with Jenkins ... 24
4.3.2 Build workspace with GitLab CI/CD .. 25
4.3.3 zAppBuild configuration ... 26

4.4 BUILD SCENARIO .. 27
4.5 CONSIDERATIONS / REMARKS .. 27

5 SCENARIO 4 - BUILD CONFIGURATION TO INCLUDE COPYBOOKS THROUGH SYSLIB CONCATENATION 28

5.1 BUILD SCOPE CONFIGURATION ... 29
5.1.1 Build workspace .. 29
5.1.2 zAppBuild configuration ... 29

5.2 ADOPTION STRATEGIES .. 29

6 CONCLUSION ... 30

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 3/30

1 Introduction

For open and modern CI/CD pipeline implementations for Mainframe, existing material (whitepapers

and Techdocs) have already been released to discuss about the scope of an application component, the

classification of private and public elements, as well as the different adoption strategies for shared

interfaces defining the communication area for a service1.

1.1 The application scope

Each application is typically related to a business component. For Mainframe development, naming

conventions are used to help to define the boundary of an application, as well as the ownership within a

centralized version control system approach. These information are important for developers to

navigate within the code base or during a root cause analysis.

Applications certainly interact – some applications

provide a service to other applications, like the

management of an account. Others will use that

service and are therefore called the consumer.

In a Cobol environment, a copybook is typically used

to describe the communication structure and is

provided by the application implementing the service.

The provider needs to share the interface definition

(the copybook) with the consumers, so they know

how to use the service. Consuming programs typically

include the published copybook to invoke the

corresponding service.

Additionally, to successfully build the consuming application, the copybooks describing the

communication structures must be available to the Cobol compiler.

Certainly, building the application includes managing the build scope of an application.

1.2 The build scope

The build scope defines the list of

application programs and copybooks to be

included in the build process. It can also be

called the build configuration, as it is linked

to the specific properties used in the build

process and stored in the git repositories.

In this diagram, Application 1 uses a service

provided by Application 2. The build scope

for building Application 1 requires access to

the copybooks of Application 2.

1 https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/resources.html

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 4/30

Considering Git as the version control system, this document will discuss several strategies to include

the copybooks in the build scope for building the applications that required them. We will relate them to

the different adoption strategies of interfaces.

1.3 Base scenario

For this document, the existing Mortgage sample application shipped with zAppBuild has been

separated into two application repositories.

The two repositories are assumed to represent two isolated applications, each with their own release

planning and release cycles. Each application has its own CI/CD pipeline definition.

We will reference the required configuration for pipelines based on Jenkins and GitLab CI/CD in this

document. However, depending on your CI orchestrator the configuration will look different, but the

same strategies can be applied.

Application Repository of EPSC

Application Repository of EPSM

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 5/30

For all the subsequent scenarios described in this document, these common rules are in effect:

• Application 1 (EPSC) consumes services provided by Application 2 (EPSM).

• To successfully build Application 1 (EPSC), it requires access to the interfaces of Application 2

(EPSM).

1.4 Overview of scenarios

For the different scenarios, the purpose of the discussion will be to highlight the necessary configuration

of the build process. The main differences in these scenarios will reside in the build configuration to pull

in the necessary copybooks from EPSM and include them in the build scope of the consuming EPSC

application.

In Scenario 1 the build configuration directly accesses the application repositories providing the service.

The build configuration in Scenario 2 includes the copybooks through a dedicated repository for

interfaces.

Scenario 3 addresses some limitations of Scenario 1 and Scenario 2 by introducing a publishing

mechanism for shared interfaces.

While the build configuration for Scenario 4 includes the copybooks through the file system – dataset

libraries.

Scenarios 1, 2 and 3 can leverage the impact build setup of zAppBuild, to automatically identify the files

changed between 2 versions of the applications’ repositories. The impact build feature will calculate the

impact of the changes within the build scope: impacted programs will be automatically be added to the

build list.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 6/30

2 Scenario 1 - Build configuration references dependent applications
repositories directly

In this scenario, the build configuration directly references the git repositories of the dependent

application(s).

Each application (EPSC and EPSM) is managed in dedicated git repositories, containing the application

programs and copybooks.

In a GitLab setup, each application (EPSC and EPSM) resides in its own GitLab project, which belong to a

unique group Multiple-repo in this setup used for illustrating the scenario. The zAppBuild framework is

hosted in its own project in GitLab and possess its own pipeline, primarily used for updating the build

workspace.

2.1 Simple scenario

2.1.1 Build scope configuration

For building the EPSC application, we need to make sure that the source files are available for the build

process, and that we correctly configure the build framework zAppBuild:

• the EPSC pipeline configuration requires to pull in the copybooks of the EPSM repository,

• Application-related configuration in application-conf properties for zAppBuild.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 7/30

2.1.1.1 Build workspace with Jenkins

In a Jenkins based build setup, the Jenkins pipeline is configured to check out the application

repositories of EPSC and EPSM to the build workspace for the EPSC build pipeline.

Within a Jenkinsfile, this translates into a checkout for each repository:

stage('Git Checkout') {
 dir (AppEPSC) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSC.git']]])
 }
 dir (AppEPSM) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSM.git']]])
 }
 }

2.1.1.2 Build workspace with GitLab CI/CD

In this configuration, the multiple-project feature of GitLab CI/CD is leveraged, to trigger pipelines of

other projects. Executing a pipeline in GitLab CI/CD implicitly contains the checkout step. So, triggering a

downstream pipeline helps to update the build workspace with content from other projects.

The pipeline configuration of the project EPSC needs to reference and depends on the pipelines of

zAppBuild and EPSM. Leveraging this behavior, EPSC’s pipeline will trigger the execution of zAppBuild’s

and EPSM’s pipelines to checkout zAppBuild and EPSM repositories into the build workspace.

However, these downstream pipelines should not execute all their steps, as they contain their own build

stages. This requires the use of conditions for some steps, which can be achieved with the except and

only keywords2 in the stages in a pipeline.

The execution process of EPSC’s pipeline is described in the following diagram, while the stages

highlighted in green are performed. Please note that the EPSC-Update stage is skipped, as it is a dummy

stage, that is executed only when the pipeline if triggered from other upstream pipelines.

2 GitLab CI reference: https://docs.gitlab.com/ee/ci/yaml/

https://docs.gitlab.com/ee/ci/yaml/

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 8/30

The pipeline of EPSC is defined in the following .gitlab-ci.yml file:

variables:
 DBB_HOME: "/usr/lpp/dbb/v1r0"
 ZAPPBUILD: "dbb-zappbuild"
 WORKDIR: "/u/gitlab/workspace/$CI_PROJECT_NAME"
 WORKSPACE: "/u/gitlab/${CI_BUILDS_DIR}/${CI_RUNNER_SHORT_TOKEN}/${CI_CONCURRENT_ID}"

EPSC-Update:
 stage: Preparation
 only:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 script:
 - echo "Updating EPSC"

zAppBuild-Update: // <<<--- Update Workspace with zAppBuild
 stage: Preparation
 except:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 trigger:
 project: DAT/dbb-zappbuild
 strategy: depend

EPSM-Update: // <<<--- Update Workspace with EPSM Repo
 stage: Preparation
 except:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 trigger:
 project: multiple-repo/App-EPSM
 branch: master
 strategy: depend

EPSC-Build:
 stage: Build
 except:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 script:
 - cd /u/gitlab/${CI_BUILDS_DIR}/${CI_RUNNER_SHORT_TOKEN}/${CI_CONCURRENT_ID}/multiple-
repo/
 - $DBB_HOME/bin/groovyz -Djava.library.path=$DBB_HOME/lib:/usr/lib/java_runtime64
$WORKSPACE/dat/${ZAPPBUILD}/build.groovy --workspace $WORKSPACE/multiple-repo --workDir
$WORKDIR/BUILD-$CI_PIPELINE_ID --hlq GITLAB.EPSC.MASTER --logEncoding UTF-8 --application App-
EPSC --verbose --impactBuild

stages:
 - Preparation
 - Build

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 9/30

In a typical setup using GitLab, the zAppBuild framework is contained in its own project and possess a

pipeline definition. The pipeline configuration of the dbb-zappbuild project (described in its .gitlab-ci.yml

file) contains steps that are only executed when the pipeline is triggered from an upstream pipeline. In

this case, the pipeline stage Preparation is executed:

stages:
 - Preparation

Preparation:
 stage: Preparation
 only:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 script:
 - echo "Updating zAppBuild Framework"

In the pipeline definition file .gitlab-ci.yml for EPSM, the process will only execute the dummy stage

(EPSM-Update), because the pipeline is triggered from an upstream pipeline. All the other stages will be

skipped.

..
EPSM-Update:
 stage: Preparation
 only:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 script:
 - echo "Updating EPSM"
..

For EPSC, the following execution diagram shows the dependencies to the other downstream pipelines:

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 10/30

2.1.1.3 zAppBuild configuration

The build framework zAppBuild is invoked using the parameter --application App-EPSC, to indicate to

build the application configuration for App-EPSC. This name will also be used for the DBB collections,

build results etc.

Within the App-EPSC repository, the application-conf directory contains additional directives for the

build framework. In application.properties, the build property applicationSrcDirs is set to include the

copybooks of EPSM to the build scope of EPSC.

Comma separated list all source directories included in application build. Supports both
absolute
and relative paths. Relative assumed to be relative to ${workspace}.
ex: applicationSrcDirs=${application},/u/build/common/copybooks
applicationSrcDirs=${application},App-EPSM/copybooks

If your application has additional dependencies, you will need to list these within the applicationSrcDirs

property to make sure, that the files are available in the build configuration as well.

Additionally, we need to specify the copybooks folder of EPSM in the copybookRule build property:

Rule to locate Cobol copybooks
copybookRule = {"library": "SYSLIB", \
 "searchPath": [\
 {"sourceDir": "${workspace}", "directory": "App-EPSC/copybooks"}, \
 {"sourceDir": "${workspace}", "directory": "App-EPSM/copybooks "} \
] \
}

2.1.2 Build scenario

For both Jenkins and GitLab CI/CD, the next build of EPSC will update the build workspace including the

EPSM repository and verify, if any files in scope of the build configuration have changed. Based on the

changes the impacted files are calculated:

..
*** Changed files for directory /var/jenkins/workspace/App-EPSC/App-EPSM/copybook:
*** App-EPSM/copybook/epsmtcom.cpy
..
..
** App-EPSC/cobol/epscmort.cbl is impacted by changed file App-EPSM/copybook/epsmtcom.cpy.
Adding to build list.
** Writing build list file to /var/jenkins/workspace/App-
EPSC/outputs/build.20201201.020815.008/buildList.txt
App-EPSC/cobol/epscmort.cbl
..

2.2 Advanced scenario

The basic scenario described above is based on a simple architecture, where no distinction is made for

copybooks: all the copybooks owned by an application are stored in the copybooks subfolder.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 11/30

As observed in typical Mainframe applications’ architectures, the application’s interfaces are usually

described in copybooks that can be qualified as public. These public copybooks are used to access

services proposed by applications and are required by other applications in their build process. On the

contrary, copybooks that are not used to define interfaces can be qualified as private and are only

consumed by the owning application.

To reflect this classification, the applications’ repositories for EPSC and EPSM were changed accordingly.

For each application, the copybooks subfolder only contains the private copybooks and the copybooks-

public subfolder contains the copybooks which can be used by other applications to use the provided

services.

2.2.1 Build scope configuration

For a successful build, we need to make sure that the necessary source files are available for the build

process.

• The build process for EPSC requires the public copybooks of EPSM to be available in the build

workspace. The EPSC pipeline configuration requires to pull in the copybooks-public folder of

the EPSM repository.

• The build configuration must reference the public copybooks of EPSM. This configuration must

be reflected in the application-conf properties of EPSC when using zAppBuild.

To reduce the scope of sources when pulling EPSM’s repository and only retrieve the copybooks-public

folder, a facility called SparseCheckout will be used in the pipeline.

This feature helps to limit the pull process and collect only the necessary artifacts from a git repository.

Unfortunately, this git feature does not exist in Gitlab – it will check out the entire repository for a

project.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 12/30

2.2.1.1 Build workspace

In this scenario, the Jenkins pipeline is configured to check out EPSC’s repository and a subset of EPSM’s

repository: using the SparseCheckout feature, only the copybooks-public folder of EPSM will be

transferred to the build workspace.

Compared to the previous scenario, the corresponding Jenkinsfile has changed to reflect the usage of

SparseCheckout:

stage('Git Checkout') {
 dir (AppEPSC) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSC.git']]])
 }

 dir (AppEPSM) {
 sh(script: 'rm -f .git/info/sparse-checkout', returnStdout: true)
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false,
extensions: [[$class: 'SparseCheckoutPaths',
 sparseCheckoutPaths:[[path:'copybooks-public/']]]]],
submoduleCfg: [], userRemoteConfigs: [[credentialsId: gitCredId,
url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSM.git',]]])
 }
}

2.2.1.2 zAppBuild configuration

Like in the simple scenario, the build framework zAppBuild is invoked using the parameter --application

App-EPSC. However, the build configuration must be adapted to reflect the change about copybooks

subfolders.

In the application.properties file of EPSC’s application-conf folder, the property applicationsSrcDirs must

be modified to include the copybooks-public subfolder of EPSM for the build configuration.

Comma separated list all source directories included in application build. Supports both
absolute
and relative paths. Relative assumed to be relative to ${workspace}.
ex: applicationSrcDirs=${application},/u/build/common/copybooks
applicationSrcDirs=${application},App-EPSM/copybooks-public

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 13/30

The property copybookRule needs to be updated accordingly:

Rule to locate Cobol copy books
copybookRule = {"library": "SYSLIB", \
 "searchPath": [\
 {"sourceDir": "${workspace}", "directory": "App-EPSC/copybook"}, \
 {"sourceDir": "${workspace}", "directory": "App-EPSM/copybooks-public"} \
] \
}

2.2.2 Build scenario

The next build of EPSC will update the build workspace including the EPSM’s copybooks-public folder

and verify, if any file in scope of the build configuration has changed.

Based on the changes the impacted files are calculated:

..
*** Changed files for directory /var/jenkins/workspace/App-EPSC/App-EPSM/copybooks-public:
*** App-EPSM/copybooks-public/epsmtcom.cpy
..
..
** App-EPSC/cobol/epscmort.cbl is impacted by changed file App-EPSM/copybooks-
public/epsmtcom.cpy. Adding to build list.
** Writing build list file to /var/jenkins/workspace/App-
EPSC/outputs/build.20201202.034639.046/buildList.txt
App-EPSC/cobol/epscmort.cbl
..

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 14/30

2.3 Adoption strategies for applications copybooks

Depending on type of change which the development teams are implementing, the build configuration

can reference different branches that can be used for the required copybook structures. In the majority

of the scenarios the changes will not be dependent, so, the main branch of EPSM (representing

production) will be used to build EPSC:

In case the service provider EPSM has implemented a new functionality, that the consumer EPSC will

immediately use, the build process for EPSC can be configured to pull in a release version of the

copybooks. Both changes need to be released at the same time and are dependent. When the copybook

changes are compatible, EPSC can also use the release branch to build their application.

2.4 Additional considerations

In the above scenario, the build configuration of EPSC would access the entire repository of EPSM.

Naming conventions and rules need to be established to reduce access for the build configuration of

EPSC.

For the adoption of copybooks, the consuming applications are immediately impacted as soon the

provider commits the modified copybook to the release or main branch.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 15/30

3 Scenario 2 - Build configuration includes dependent interfaces
through dedicated repositories

Picking up the copybooks directly from the providing application repositories relies on a set of rules,

which all systems need to follow.

As already discussed in the previous section (2.2 Advanced scenario), a classification of the copybooks

can be used to define the visibility of interfaces and private definitions. However, performing this

classification is not a pre-requisite to implement the strategy of this scenario.

In this section, we will discuss the strategy of using dedicated repositories for copybooks. Compared to

the first strategy, each application maintains two repositories:

• A repository managing elements relevant to their implementation,

• A repository managing copybooks, which can be consumed by other applications.

3.1 Repository definitions

A dedicated repository for copybooks is maintained for each application. To extend this concept,

copybooks can be classified: the private copybooks would be stored in the application repository along

with the implementation, and the public copybooks which define the interfaces to the services would be

stored in a separate repository:

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 16/30

To illustrate this setup, the EPSC’s public copybooks identified in the previous scenarios were moved to a

new, dedicated repository called App-EPSC-Public. The same change was applied to EPSM’s public

copybooks, which were moved to a dedicated repository called App-EPSM-Public:

3.2 Build scope configuration

As for the previous scenarios, the necessary source files must be available for the build process to

ensure a successful execution:

• The build process for EPSC requires the public copybooks of EPSM to be available in the build

workspace. The EPSC pipeline configuration requires to pull in the copybooks of the EPSM public

copybook repository.

• The build configuration must reference the copybooks of EPSM. This configuration must be

reflected in the application-conf properties of EPSC when using zAppBuild.

By using a dedicated repository for public copybooks, consuming applications only have access to this

subset of the providing application, and not the entire source repository.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 17/30

3.2.1 Build workspace with Jenkins

In a Jenkins based build setup, the Jenkins pipeline for EPSC is configured to check out the two

repositories of EPSC and the public copybook repository of EPSM, providing the copybooks required for

EPSC.

Within a Jenkinsfile, this translates into a checkout for each repository, while only the App-EPSM-Public

repository is referenced in the build scope:

stage('Git Checkout') {
 // EPSC Application repository
 dir (AppEPSC) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSC.git']]])
 }
 // EPSC Public Copybook repository
 dir (AppEPSCPublic) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSC-
Public.git']]])
 }
 // EPSM Public Copybook repository
 dir (AppEPSMPublic) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSM-
Public.git']]])
 }
}

3.2.2 Build workspace with GitLab CI/CD

Again, the multiple-project pipelines feature will be used to reproduce this configuration. In this

situation, EPSC’s and EPSM’s public copybooks are grouped into new projects, respectively called App-

EPSC-Public and App-EPSM-Public, and are part of the same GitLab Group:

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 18/30

As the App-EPSC-Public and App-EPSM-Public repositories don’t contain artifacts to be built, their

respective pipelines only contain a dummy stage, which is executed only when triggered from another

pipeline. The pipeline definition for App-EPSC-Public is as follows:

EPSC-Public-Update:
 stage: Preparation
 only:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 script:
 - echo "Updating EPSC-Public"

stages:
 - Preparation

The pipeline of EPSC is modified to integrate the checkouts of EPSC-Public and EPSM-Public repositories.

Compared with the first scenario of the pipeline of EPSC, the invocation of the EPSM pipeline is replaced

by the invocation of the pipelines of EPSC-Public and EPSM-Public, also specifying which branch to

checkout:

EPSC-Public-Update:
 stage: Preparation
 except:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 trigger:
 project: multiple-repo/App-EPSC-Public
 branch: Scenario2b
 strategy: depend

EPSM-Public-Update:
 stage: Preparation
 except:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 trigger:
 project: multiple-repo/App-EPSM-Public
 branch: Scenario2b
 strategy: depend

The following diagram shows the structure for the EPSC pipeline:

The same modification is applied to the EPSM’s pipeline, to follow this strategy.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 19/30

3.2.3 zAppBuild configuration

Like in the previous scenarios, the build framework zAppBuild is invoked using the parameter --

application App-EPSC.

In the application.properties file of EPSC’s application-conf folder, the property applicationsSrcDirs must

be modified to include the copybooks-public subfolder of EPSM for the build configuration.

Comma separated list all source directories included in application build. Supports both
absolute
and relative paths. Relative assumed to be relative to ${workspace}.
ex: applicationSrcDirs=${application},/u/build/common/copybooks
applicationSrcDirs=${application},App-EPSC-Public/copybooks-public,App-EPSM-Public/copybooks-
public

The property copybookRule was updated accordingly:

Rule to locate Cobol copy books
copybookRule = {"library": "SYSLIB", \
 "searchPath": [\
 {"sourceDir": "${workspace}", "directory": "App-EPSC/copybook"}, \
 {"sourceDir": "${workspace}", "directory": "App-EPSC-Public/copybooks-public"} \
 {"sourceDir": "${workspace}", "directory": "App-EPSM-Public/copybooks-public"} \
] \
}

3.3 Build scenario

Either with Jenkins or GitLab CI/CD, the next build of EPSC will update the build workspace with all 3

referenced repositories and verify, if any file in scope of the build configuration has changed.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 20/30

Based on the changes that can occur either in App-EPSC, App-EPSC-Public or App-EPSM-Public

repositories, the impacted files are calculated:

..
** Diffing baseline 06812fa992d9dc4e019fea712fea5d9775f70e0d -> current
06812fa992d9dc4e019fea712fea5d9775f70e0d
*** Changed files for directory /var/jenkins/workspace/Scenario2-EPSC/App-EPSC:
*** Deleted files for directory /var/jenkins/workspace/Scenario2-EPSC/App-EPSC:
** Calculating changed files for directory /var/jenkins/workspace/Scenario2b-EPSC/App-EPSC-
Public/copybooks-public
** Diffing baseline 6c31b38b193c92a7995d93e96a85ae748f554e74 -> current
6c31b38b193c92a7995d93e96a85ae748f554e74
*** Changed files for directory /var/jenkins/workspace/Scenario2-EPSC/App-EPSC-
Public/copybooks-public:
*** Deleted files for directory /var/jenkins/workspace/Scenario2-EPSC/App-EPSC-
Public/copybooks-public:
** Calculating changed files for directory /var/jenkins/workspace/Scenario2-EPSC/App-EPSM-
Public/copybooks-public
** Diffing baseline f08b16975e41b7f04526e77fca9581b7a7d48395 -> current
b00e67646867be700670636042d89921c11b4d8b
*** Changed files for directory /var/jenkins/workspace/Scenario2-EPSC/App-EPSM-
Public/copybooks-public:
** Testing if fixed file path exists : copybooks-public/epsmtcom.cpy
*** App-EPSM-Public/copybooks-public/epsmtcom.cpy
..
..
** Found impacted file App-EPSC/cobol/epscmort.cbl
** App-EPSC/cobol/epscmort.cbl is impacted by changed file App-EPSM-Public/copybooks-
public/epsmtcom.cpy. Adding to build list.
** Writing build list file to /var/jenkins/workspace/Scenario2b-
EPSC/outputs/build.20201204.091628.016/buildList.txt
App-EPSC/cobol/epscmort.cbl
..

3.4 Additional considerations

This chapter has described how the build scope can include several repositories which contain the

copybooks (interface descriptions), while “hiding” the actual implementation of the service-providing

applications.

For the build configuration, the choice is still given to either include the work-in-progress version from a

release branch, or to include the copybooks currently being in production (as described in section 2.3

Adoption strategies for applications copybooks).

However, development teams now need to manage and coordinate changes in several git repositories.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 21/30

4 Scenario 3 - Build configuration includes a single repository of all
shared copybooks

This scenario will address some limitations and drawbacks of the previous scenario for the developer

like contributing to several git repositories or coordinating pull requests on several repositories.

Additionally, managing the build scope might be challenging when having a large number of

dependencies on other applications.

Quickly, the concept of having a common shared repository appears: all the applications would then

store their copybooks in this common repository, to simplify the management of the build configuration.

The advantage is that applications consuming any service will just need to reference this shared

repository to include all the necessary copybooks. It is also possible to perform a specific retrieval only

for the required copybooks using Git’s SparseCheckout feature (please note, that this feature is not

available in GitLab CI/CD pipelines).

The major drawback of this organization is that all application teams would still need to commit and

work against at least two repositories: they would need to consistently maintain their application

repository and the shared repository where they would store their public copybooks, like all shared

interfaces.

To address the above-mentioned limitations, a new organization can be set up:

• Using a single application repository (as depicted in scenario 1),

• Introducing an automated publishing process for public copybooks to replicate a copybook from

the application repository to a repository for shared interfaces.

4.1 Repository definitions

The repository setup is similar to the one described in the advanced scenario 1 (2.2 Advanced scenario).

Each application team works in their application repository, which contains all the private and public

copybooks.

A new repository for the shared interfaces is established, as a container for the publishing mechanism of

the public copybooks.

The build framework requires a new step for the public copybooks, to automatically publish them to the

repository of the shared interfaces.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 22/30

In this setup, the application repository of EPSM contains subfolders for the classified public copybooks

(copybooks-public) and the private copybooks (copybooks). The application team exclusively operates on

this repository.

The repository for the shared interfaces will contain a copy of all shared interfaces of all applications. As

highlighted in the above diagrams, the shared interfaces repository manages two branches - a release

and a main branch. The publishing mechanism will add the public copybooks into a subfolder for each

application – in the below sample EPSC-copybooks and EPSM-copybooks.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 23/30

4.2 Publishing mechanism

The build framework implements an automated process for publishing the public copybooks from the

application repository to the shared interfaces repository.

When the provider application has modified a public copybook in the release branch (or any other

branch used for integration), the build framework will commit and push a copy of the public copybook

to the shared interfaces repository.

Options to implement this publishing mechanism are:

• a post processing action in the zAppBuild build framework, that performs the above steps to

propagate the public copybook to the shared repository.

• or a dedicated build definition to publish the modified public interfaces to the shared repository.

You can find a sample implementation of the publishing script at

https://github.com/IBM/dbb/tree/master/Pipeline

In both scenarios, rules need to be established about the source branch for the publishing mechanism.

When the modified copybook is released to production, it is crucial to update the application repository

as well as the repository of the shared interfaces.

Other adoption strategies have already been discussed in the whitepaper3.

An alternate option is to publish the public copybooks to a binary artifact repository like Nexus or

Artifactory.

3 Whitepaper Develop Mainframe Software with Opensource Source Code Managers and IBM Dependency Based
Build (https://www.ibm.com/support/pages/node/6355719)

https://github.com/IBM/dbb/tree/master/Pipeline
https://www.ibm.com/support/pages/node/6355719

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 24/30

4.3 Build configuration

4.3.1 Build workspace with Jenkins

In a Jenkins based build setup, the Jenkins pipeline for EPSC is configured to check out the EPSC

repository and the shared repository.

Within a Jenkinsfile, this translates into a checkout for the application repository and the repository of

the shared interfaces. Again, a SparseCheckout can be applied here for the shared repository, to limit

the scope of the checkout process.

stage('Git Checkout') {
 // EPSC Application repository
 dir (AppEPSC) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSC.git']]])
 }
 // Shared Interfaces repository
 dir (Shared) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/Shared.git']]])
 }
}

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 25/30

4.3.2 Build workspace with GitLab CI/CD

In this configuration, the multiple-project feature is also used to invoke pipelines of other projects.

The Shared project in GitLab contains a pipeline definition, which is very similar to the pipeline of App-

EPSC-Public or App-EPSM-Public. It only defines a dummy stage that is executed when the pipeline is

triggered from an upstream pipeline:

Shared-Update:
 stage: Preparation
 only:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 script:
 - echo "Updating Shared"

stages:
 - Preparation

The pipeline of EPSC is configured accordingly to reference this new project and invoke the pipeline of

Shared project:

Shared-Update:
 stage: Preparation
 except:
 variables:
 - $CI_PIPELINE_SOURCE == 'pipeline'
 trigger:
 project: multiple-repo/Shared
 branch: Scenario2a
 strategy: depend

The result of this configuration is shown in the execution diagram:

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 26/30

4.3.3 zAppBuild configuration

Like in the previous scenarios, the build framework zAppBuild is invoked using the parameter --

application App-EPSC.

In the application.properties file of EPSC’s application-conf folder, the property applicationsSrcDirs must

be modified to include the copybooks-public of the shared interfaces repository for the build

configuration.

Comma separated list all source directories included in application build. Supports both
absolute
and relative paths. Relative assumed to be relative to ${workspace}.
ex: applicationSrcDirs=${application},/u/build/common/copybooks
applicationSrcDirs=${application},Shared

In this scenario, it is sufficient to just point to the Shared folder, as this repository contains the published
copybooks.

The property copybookRule was updated accordingly:

Rule to locate Cobol copy books
copybookRule = {"library": "SYSLIB", \
 "searchPath": [\
 {"sourceDir": "${workspace}", "directory": "App-EPSC/copybook"}, \
 {"sourceDir": "${workspace}", "directory": "Shared/EPSC-copybooks"} \
 {"sourceDir": "${workspace}", "directory": "Shared/EPSM-copybooks "} \
] \
}

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 27/30

4.4 Build scenario

The next build of EPSC will update the build workspace with the two referenced repositories and verify,

if any file in scope of the build configuration has changed.

Based on the changes that can occur either in App-EPSC or the shared repository, the impacted files are

calculated:

..
** Calculating changed files for directory /var/jenkins/workspace/Scenario2a-EPSC/App-EPSC
** Diffing baseline 2ce55a5dd734d35e9e4d7ac662db4ab2d9c7c1ed -> current
2ce55a5dd734d35e9e4d7ac662db4ab2d9c7c1ed
*** Changed files for directory /var/jenkins/workspace/Scenario2a-EPSC/App-EPSC:
*** Deleted files for directory /var/jenkins/workspace/Scenario2a-EPSC/App-EPSC:
** Calculating changed files for directory /var/jenkins/workspace/Scenario2a-EPSC/Shared
** Diffing baseline 0e0556dd74f4a15bd1f75aa620f5247e8af644cc -> current
e7acd19d49c2f4e1cd355992a24159931bc0c7b2
*** Changed files for directory /var/jenkins/workspace/Scenario2a-EPSC/Shared:
** Testing if fixed file path exists : EPSM-copybooks/epsmtinp.cpy
*** Shared/EPSM-copybooks/epsmtinp.cpy
..
..
** App-EPSC/cobol/epscmort.cbl is impacted by changed file Shared/EPSM-copybooks/epsmtinp.cpy.
Adding to build list.
** Writing build list file to /var/jenkins/workspace/Scenario2a-
EPSC/outputs/build.20201203.115757.057/buildList.txt
App-EPSC/cobol/epscmort.cbl
..

4.5 Considerations / remarks

This scenario addresses the limitations of the previous scenarios:

• Compared to the first scenario, this implementation limits what the consuming applications can

see from the providing application,

• Compared to the second scenario, it helps to simplify the build configuration as only one

repository needs to be referenced to access all the published interfaces of all applications.

Additionally, development teams only operate against a single git repository for their application

artifacts.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 28/30

5 Scenario 4 - Build configuration to include copybooks through SYSLIB
concatenation

An alternate way to include dependent copybooks is simply by referencing an existing MVS library,

which contain the copybooks. This library would be added to the SYSLIB concatenation, which usually

lists all the libraries where the compiler needs to look for copybooks.

One drawback of this technique is that the zAppBuild framework does not recognize changes happening

in these libraries. Consequently, impact builds with zAppBuild will not be able to calculate the list of

impacted files and programs that are using the copybooks in these libraries will not automatically be

rebuilt. This might be the simplest way to configure the build framework, but it requires more manual

coordination between teams to synchronize changes.

These copybook libraries can be the libraries used in the individual application builds or a shared library,

where the application builds publish their copybooks, like the publishing mechanism described in the

previous section.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 29/30

5.1 Build scope configuration

5.1.1 Build workspace

To implement this strategy, the build workspace simply includes the elements stored in the application

repository. The following definition can be used in a Jenkins pipeline:

stage('Git Checkout') {
 // EPSC Application repository
 dir (AppEPSC) {
 checkout([$class: 'GitSCM', branches: [[name: GitBranch]],
doGenerateSubmoduleConfigurations: false, submoduleCfg: [], userRemoteConfigs:
[[credentialsId: gitCredId, url: 'git@github.ibm.com:zDevOps-Acceleration/App-EPSC.git']]])
 }

For a GitLab CI/CD pipeline, no specific configuration is required, as no downstream pipeline needs to be

executed.

5.1.2 zAppBuild configuration

Like in the previous scenarios, the build framework zAppBuild is invoked using the parameter --

application App-EPSC. In the application.properties file of EPSC’s application-conf, the property

applicationsSrcDirs just includes the application directories of EPSC itself.

Comma separated list all source directories included in application build. Supports both
absolute
and relative paths. Relative assumed to be relative to ${workspace}.
ex: applicationSrcDirs=${application},/u/build/common/copybooks
applicationSrcDirs=${application}

The property copybookRule points to the copybooks owned by the EPSC application

Rule to locate Cobol copybooks
copybookRule = {"library": "SYSLIB", \
 "searchPath": [\
 {"sourceDir": "${workspace}", "directory": "App-EPSC/copybook"}, \
] \
}

The latest version of zAppBuild allows specifying additional libraries (provided as a comma-separated
list), which will be added to the SYSLIB for the compiler and linker. In this scenario, the copybooks
provided by EPSM and required for a successful of EPSC are stored in the EPSM.RELEASE.COPYLIB
dataset on MVS:

additional libraries for compile SYSLIB concatenation, comma-separated
cobol_compileSyslibConcatenation=EPSM.RELEASE.COPYLIB

5.2 Adoption strategies

In this configuration, assuming the EPSM application maintains several versions of its copybooks, the

EPSC application would still be able to select which version to adopt. For instance, including the MAIN

version (stored in the EPSM.MAIN.COPYLIB dataset) would allow EPSC to use the production version of

the copybooks, while picking the RELEASE version of copybooks (EPSM.RELEASE.COPYLIB) would permit

to immediately integrate the last versions of EPSM’s copybooks.

Managing the build scope in IBM DBB builds with IBM zAppBuild Page 30/30

6 Conclusion

The above scenarios are not an exhaustive list of ways to configure the build scope to resolve

dependencies across multiple repositories. It can vary depending on the selected git provider or CI

orchestrator.

Additionally, the focus was set on the management of dependencies at the source level, like copybooks

or include files, and the integration of binary dependencies, like submodules, was not discussed.

To meet the different development workflows, certainly the scenarios can be mixed: for example, during

the migration period, one of the first 3 scenarios can be combine with scenario 4 to include dependent

copybooks, that are still managed though a legacy solution.

